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Asymptotic estimates for Laguerre polynomials
By N. M. Temme, Centre for Mathematics and Computer Science,
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1. Introduction

The asymptotic behaviour of Laguerre polynomials

L@ =Y ("*“)(‘x)m (1.1)

moo\n—m) m!

has been the subject of several investigations. The earlier results are summa-
rized in Szegd [12]. For x =4n + (9(\/;) an Airy function is used, and it
describes the transition of the oscillatory to the monotonic region in the
x-interval. Later, a more complete description has been given by Tricomi,
summarized in [5]. Let

K=n+(+1)/2. (1.2)

Tricomi distinguished four cases:

@) x near 0, Hilb’s formula,

(i) 0<x <4k, oscillatory region,
(iii) x near 4k, turning point region,
(iv) x > 4k, monotonic region.

In (i) a Bessel function is used for the transition of x <0 (a monotonic
region) to the oscillatory region. The early zeros of L®(x) can be approxi-
mated in terms of those of the Bessel function J,(z). The transition at the
turning point in (iii) is described by an Airy function.

The x-regions of validity in Tricomi’s results do not overlap. Erdélyi [6]
showed that the whole of the real x-axis could in fact be covered by just two
asymptotic approximations. He obtained the leading terms of the approxi-
mations by using the differential equation of the Laguerre polynomial.
These forms are substantially extended by Olver [10], who gave complete
asymptotic expansions of the Whittaker functions, which, as special cases
yield Erdélyi’s results; moreover, Olver supplied error bounds for the
remainders in the expansions.
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In a recent paper, Frenzen and Wong [7] also derived complete expan-
sions, together with explicit integral representations of the error terms and
order estimates. Their approach was based on two integral representations
of the Laguerre polynomials.

When we allow o to grow (with n or independently), the zeros of the
Laguerre polynomial increase. It appears that the oscillatory region of
L{(4xx) is located in an interval (x,, x,) = [0, 1]; x,, will be given in §3.
The J-Bessel function can still be used to describe the behaviour in a
domain including the interval (— o0, x;], but the argument of the Bessel
function is more complicated than in the case with « fixed. In a domain
including [x,;, c0) a Hermite polynomial can be used for describing the
transition in both points x, ,.

In §2 we summarize the results of Frenzen and Wong [7], in which » is
large and « > —1 is fixed. In §3 we discuss three asymptotic approximations
in which x of (1.2) is large, that is, o or n or both are large. These forms are
available in the literature for Whittaker functions, and are now interpreted
for Laguerre polynomials. Two results follow from Dunster [4], in which a
J-Bessel and an Airy function as comparison functions are used. The other
interpretation is obtained from Olver [11], which originally contains a
parabolic cylinder function. Here we can use a Hermite polynomial. This is
especially of interest for estimating the zeros of L®(x) for the case that n
and « are large. In §4 we show the results of a numerical evaluation of the
approximation to the zeros.

Information on the special functions used in this paper can be found in
Olver [10].

2. Asymptotic forms with n large and a > —1 fixed

In this section we summarize the results of [7], which are obtained by
using two integral representations of the Laguerre polynomials. The cited
reference gives a detailed discussion of the conformal mappings that are
needed to transform the integrals in the complex plane to standard forms.

Let a and b be fixed numbers, 0 <b < a < 1, and let v = 4k, where k is
given in (1.2).

2.1. Approximation in terms of a Bessel function
Let

AG) {%i[, /x? — x — arcsinh/ —x], if x <0;
x =

H/x — x*+ arcsin / x], ifo<x<l.
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Then for p=0,1,2,...
J(vA) P g
A* o (2K)*
[p/2] -1
_Ja+1(VA) sz+l +e (2.1)

Aa+l o (ZK)2k+l 124

where ¢, is a remainder, and J,(z) is the familiar Bessel function. The
coefficients o, Bk 4 follow from the following scheme. Let

u a+1 dZ
h(w) = [sinh z(u)] au’

where the relation between z and u is given by the equation

2% 2@ (4kx) =

z—xcothz=u— A*x)/u.

Then we define recursively (with ho(u) = h(u)) a set of functions {h,}, {g,}
and coefficients {«, }, {f,} by writing

1
ha) =+ B+ (L 020y @), s 0) = €10) — T g,

In [7] explicit expressions for o, and f, are given, and an explicit integral
representation for ¢,. By constructing order estimates for ¢, it is shown that
(2.1) is an asymptotic expansion as n — o0, o > —1 fixed, and x € (— o0, a].
When x <0 the expression J,(vA)/A* can be replaced with a similar
expression containing the modified Bessel function.

Expansion (2.1) also follows from [10, p. 446]. Olver supplied explicit
error bounds, which are obtained from his theory on differential equations.

2.2. Approximation in terms of an Airy function
Let

_(iB3B)/2", if0<x<1;
B = {[Sy(x) 21 i x>,

B(x) = 1/4n — A(x) = 1/2[arccos/x — \/x — x7],
() = 1/2./x% — x — arccosh,/x].

Then for p=0,1,2,...

[(p—=1)/2]

(—1)"2% L (4kx) = Ai(v*PB?) ) oayv *71A
k=0

p/2)—1

/
Z ﬂ2k+lv ~2k—5/3+£p’ (2‘2)
=0

k

[
— Ai'(v?PB?)



Vol. 41, 1990 Asymptotic estimates for Laguerre polynomials 117

where ¢, is a remainder, and Ai(z) is the Airy function. The coefficients
Ooks Pak+1 follow from the recursion

hn(u) =a, + ﬂnu + (uz - Bz)gn(u)s hn+ l(u) = g;,(u),
with

dz

ho(w) = h(e) =[1 = 2@ ==,

where the relation between z and u is given by
1/2[arctanh z — xz] = 1/3u® — B*(x)u.

Again, the first coefficients «, and g, are given explicitly, and an estimate of
the remainder ¢, is given. It is shown that (2.2) is an asymptotic expansion
as n—o0,a > —1 fixed, and x € [b, o).

A similar expansion follows from Olver [10, p. 412], where the methods
are based on differential equations, and explicit error bounds are given for
the remainder.

3. Asymptotic forms with x large

In this section we consider the Laguerre polynomial for large values of

Kk defined in (1.2). Without giving all technical details we give the main steps

that yield the leading terms of the approximations. The technique is based

on the Liouville-Green (LG) transformation for differential equations,
which is extensively investigated in [10].

The relation between Laguerre polynomials and Whittaker functions is

(=1

@(p) =~ ) =@+ 1)[2,22
LY (z) = T + e W, .(2)
_Te+n+ l)z”(‘” B2

T onll(@+1) e M2 (-1

with x as in (1.2) and y = «/2. The functions M, ,(z), W, ,(z) are solutions
of Whittaker’s equation

d’y 1 K w—3
2;5—[2—?“ 2z

A first transformation z = 4kx yields

W _ [Kz 40x —x)(x = X3) ___I_]W, (32)

dx? x? 4x?
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e N PR R ey (3.3

Solutions of (3.2) are M, ,(4xx), W, (4kx).

When t € [0, 1,], fixed in (0, 1), the quantities x,, x, are well separated.
In that case the analysis concentrates on the points x =0, x = x,, a pole and
a transition point of the differential equation (3.2), or on the transition
point x,. Alternatively, when t € [t,, 1] the turning points x, , may coalesce
at 1, and the domain of interest is an interval of positive x-values that
contains both points x,,.

3.1. Approximation in terms of a Bessel function

The results of this subsection follow from the recent paper [4] of
Dunster, where complete expansions for the Whittaker functions are given
for a complex x-domain, and error bounds for the remainders. Earlier
results of this kind, but rather limited compared with Dunster’s, are given
by Baumgartner [2].

We apply the LG transformation to (3.2) by introducing { = {(x) and
w({), writing for x < x,

p:={ f’é 2_4(x—x1)(x——x2)'
40 \dx) x2 ’

the dot indicates differentiation with respect to {, and

W(x) = /xw(0),

(3.4)

od

y=—=21.
K

Solving the differential equation for { with the conditions {(—o0) =
— 00, {(0) =0, {(x,) =y, one obtains the following relations

(i) 0<{<y? 0<x<x,

-V =C+y arctanh———“i—c

2.2 2TR 2R +2x — 1
- —-2R+r1n{r e !+lni o ! (3.5)
2x\/1—r‘| \/1——1 ’
(il) ,)JZS{’ xlsx<x2’
{ —79%—7y arctan ch_—r
_ 2 1 —
= 2R — 7 arctan 2';; — arctan 2R2x+g(l—r), (3.6)
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where R =/|(x —x;)(x — x;)|. When { <0, x <0, relation (3.5) can be
used with arctanh replaced with arccoth.
The LG transformation brings (3.2) in the form

. Jpie 1
W = [K~ ”4(24 - 4—6—2]w + ¢, (3.7)
where
2 1 &2
WO = —ertmtViE

_ 160 +49*)R — x(p2 — 0)’[x(1 — 4¢%) + 7° + 4]
25602R%(y* = {)?
The function {(x) is analytic for x < x,; ¢ is analytic in a corresponding
{-domain.

For identifying the solutions of (3.7) in terms of the Laguerre polyno-
mial, one needs the coefficient ¢, in the expansion

{=cx+0(x?, as x-0.
From (3.5) it follows straightforwardly

16 1/(27)
o6=- 1-12<1+T> . (3.8)

l1—1

When in (3.7) the function ¢ is neglected, then the Bessel function
wo(f) = \/ZJ,(K {) is a solution. A second form containing the he Y-Bessel
function cannot be used for approximating the Laguerre polynomial. This
can be verified by comparing the behaviour of the choice wy({) and that of
w({) (for the case of the Laguerre polynomial) at { =0. The complete
solution is put in the form w({) = wy({) + &. When we use the M-function in
(3.1), we obtain

LE(4kx) = AP x =22 /3] JTT (5 /D) + €], (39)

where 4 does not depend on x. This quantity follows from the behaviour
of the Bessel function at the origin, and

o _(ntoa\ Tr+oa+1)
Lﬁ,’(O)—( n )— T+ Dn! -

Thus we obtain
IT'(n+oa+1
g =TI D e Jer,

where ¢, is given in (3.8).
From [4] it follows that, if x — co, the remainder ¢ in (3.9) is small
compared with \/ZJa(K\/Z), except in the neighbourhoods of the zeros of
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this function where ¢ is small compared with the envelope of \/ZJa (K\/Z). In
other words, when ¢ is neglected, (3.9) is an asymptotic approximation as
k — oo. This holds uniformly with respect to x and t in the domains
(—o0, &1, [0, 14], respectively, where 7, is a fixed number in (0, 1), and
& =0,x,+ (1 —0))x,,0, fixed in (0, 1). The condition 0 <t <1, can be
written as

To

OSaSl (2n +1).

We may write this as
0<a<on,

where «a, is any fixed positive number.

3.2. Approximation in terms of a Hermite polynomial

In this subsection we take into account that, if T — 1, the turning points
x;, of (3.2) coalesce at 3. Considering the methods of Olver [11], we use the
LG transformation

2

d 4(x — —x,
W(x) = /xw(n), (n2~az)<£€-> _ x')z(x x), (3.10)

X

where x >0 and ¢ is a non-negative number defined by

) . x2 dx
J o —nidn = 2f V06— x)(x = xp) =
o ) x
Evaluation of the integrals yields

0 =+2(1—-1). (3.11)

The relation between # and x is one-to-one, with

n(0) = —oco0, n(x;)=—g, n(x2) =0, n(+o)=+o0. (3.12)

Solving the differential equation for x in (3.10) with the above boundary
conditions, we obtain the following relations. Let R be as in (3.5), (3.6), and
0<t<l.

() oe<n<ow, x<x<o0:

m/n?— o0 — 10> arccoshg

— 2 —
=2R—tln[2x r+2tR]_1n|:2R+2x 1:|

2x./1 — 1?2 J1=1

: (3.13)
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() —e<n<g x<x<x

1 2_ 2,12 .|

M/ — N +30 arcsm-Q—

2

2x —1 1 —-2x
=2R — t - —_—
T arctan ——— —arctan ———; (3.14)
(iii) —co<np < —p, 0<x<x:
—3n+/e? — n> — 30% arccosh —_é—-
2 — — —
= —2R+1 ln[r—-ix—t@jl + ln[l———M]. (3.15)
2x./1 —12 1—1?
If 7 =1 we have
sn?=2x —In(2x) — 1, sign(n) = sign(x — 3). (3.16)
The differential equation (3.2) transforms into
dzw 20,2 2
preie [<*(n* — o) + y()w
in which
) = 16(372 + 20%)RS — x(n* — 0?)%[4x3> + (1 —41D)x + 17

64(772 _ QZ)ZRG
By investigating the behaviour of x() at + oo it can be shown that

Y(m) = 0[1/(n*+ 1)

uniformly with respect to t € [1,, 1], with 7, fixed in (0, 1).

The above results can be interpreted for 7 > 1, but for the Laguerre
polynomial these values do not make sense.

From Olver’s theory it follows that the Whittaker function W, ,(z) can
be written as

W) = 90 ZUZ L 0 gton /20 44
(3.17)

in which U(a, z) is a parabolic cylinder function (see [1, Chapter 19]).
Again, when x — o0, the remainder ¢ is small in the same sense as described
for ¢ in (3.9). As in [11] an upper bound for ¢ can be constructed.

By using (3.1), it follows that for the Laguerre polynomials the quantity
—1K0? in the U-function in (3.7) can be written as (see (1.2), (3.3) and
(3.11)) —ikp?= —(x — u) =n — ;. Hence, the parabolic cylinder function
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reduces to a Hermite polynomial:
U(—n—1 2)=D,(z) =2""2 =P H,(z/\/2), (3.18)

where D,(z) is another notation for parabolic cylinder functions.
By combining (3.1), (3.17), it follows that

n
Lf,°"(4xx)=( 1) 2—m—n/2—3/4K—~a/2—1/4x—a/262xx—m12/2
n!

x[i’_i_‘i_t!l%]””““[( n*—e? ]W[H,,(n\/?HEL (3.19)

e x — X )(x — x2)

where
o
k=n+(@+1)/2, t=5o 0= 2(1—1).

When ¢ is neglected, this form can be viewed as an asymptotic estimate with
k as the large parameter. This asymptotic property holds uniformly with
respect to x € [0, ©), T € [1q, 1]

The latter gives for « the condition

o=

To
—— (2n+1),
which may be written as o > a,n, where o, is any fixed positive number.

In Olver [11] the role of the large parameter differs slightly from that in
the above analysis. We consider k as the large parameter. Olver’s asymptotic
estimate of the Whittaker function W, ,(z) is valid for a — co, uniformly
with respect to x € [0, c0) and n € [0, nya), where n, is positive and fixed. It
follows that in our version (3.19) of Olver’s result these conditions can be
used also.

The asymptotic representation (3.19) of L™ (z) in terms of the Hermite
polynomial seems to be new. In [9, p. 251] the limit

M —n, a ( — 1)” —n,
lim o =L + NOE —2 PH,(1//2) (3.20)
is given, without reference to a source. This relation was also given by
Calogero [3]. We verify it by using special values of the parameters in (3.19).
When o is large with respect to n, we have T — 1. In the limit 7 =1, the
relation between n and x is given by (3.16), and ¢ =0. So we have if « > n

Lﬁ,"‘)(4xx) ~ (_n})n D—a—n/2—3/4, —af2~ 1/4x"1/2(26x)"

n4o+4 12 ter2 n
X|: P } X — 1/2 Hn(n\/;)>

Writing 4xx = o + t\/;, we observe that x — 1/2. In this limit, n can be




Vol. 41, 1990 Asymptotic estimates for Laguerre polynomials 123

replaced with x — 1/2. A few further calculations give indeed (3.20). It is
valid for fixed values of ¢ and n, although (3.20) can be replaced with an
asymptotic relation in which ¢t = o(\/&), n = o(a), as o — 0.

We cannot claim that (3.19) holds uniformly in the (x, r)-domain
[0, o0) x [0, 1], that is, inclusive the origin in both intervals. The reason is
that for 7 —>0 the mapping x> n(x) tends to a limit mapping in a
non-uniform way. For instance, 1 =0 gives in (3.3) x;, =0, and in (3.12)
n(0) = — o0, as well as n(0) = —\/5.

Recall that Dunster’s result (3.9) is valid for x bounded away from
X5, X < x, and for 0 < a < o, n. It follows that (3.9) and (3.19) describe the
asymptotic behaviour of L®(4xx) in overlapping domains of the (a, x)-
quarter plane, but not in the complete quarter plane [0, c0) x [0, c0). The
missing piece is considered in the next subsection.

3.3. Approximation in terms of an Airy function

When « is restricted to an interval [0, a;n], a; fixed and positive, the
parameter t may tend to zero if x — oo; this happens, for instance, when o
is fixed. When, in addition, x is large, this case is not covered in the previous
two subsections; (« fixed is covered in §2.2, but we want to include the above
indicated a-domain). In this subsection we consider (3.2) for x € [;, o)
and a € [0, a3n], where &; = 60;x; + (1 — 65)x,, 05 fixed in (0, 1). This x-
domain contains one critical point: the turning point x,.

The appropriate LG transformation is

W) = /5w, e:(gf-) _ 4 ) — )

x
with conditions &(x,) =0, é(+ o) = +oo. The relation between ¢ and x
follows from (3.13) and (3.14), with the left-hand sides replaced with 3¢%2
The differential equation (3.2) is transformed into
P
de?

in which

= [K*¢ + 1(O)lw,

(&) = 5‘_2_*_ \/} @ 1
X - 42 d§2\/;
The comparison function is an airy function, and we write
w(&) = Ai(k??&) +&.

By considering the function &(x) as x = + co, we can identify the solution w
with the Laguerre polynomial. We have

2832 =2x —Inx + O(x~"), as x— + oo,
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and we finally arrive at

~

—1"

n!

L@ (4icx) = 23/2\/'7;,(1/6(4,()" x—@+ 1)/2e21cx\/;[Ai(K2/3é) +£].
Further details can be found in Dunster [4], where complete expansions are
given for Whittaker functions, with error bounds for the remainders in a
complex x-domain.

3.4. Three forms are not enough to cover the real x-axis

A fourth (x, x)-domain can be introduced denoted by [asn, 00) x
(— o0, 0], where «ay is fixed and positive. In this case 7 is bounded away from
unity. The x-interval contains a double pole at its boundary, and no turning
points. This case is less complicated than the previous ones, and details will
not be given. In fact an asymptotic expansion in terms of elementary
functions can be obtained. Confer [10, p. 362] and the expansion of the
modified Bessel functions in [10, pp. 374-378].

4. Computation of zeros of Laguerre polynomials

The asymptotic estimate (3.19) has the Hermite polynomial as approxi-
mant. This polynomial has the same number of zeros as L® (4kx) itself. The
zeros of L (4xx) occur in the region x, < x < x,. Let /),, A, ,, be the m-th
zeros of L (z), H,(z), m=1,2,...,n. For given a and n, we can compute

r, _ hn,m
n,m \/;c"
Upon inverting (3.14) we can obtain x,,, giving the estimate

lf‘of’)" ~ 4Kx’l,m’ m= 1: 29 AR} n. (4.2)

m=1,2,...,n. 4.1

From properties of the Hermite polynomials (see, for instance, Hochstadt
[8, p. 50]) it follows that all zeros h,, are located in the interval
[—/2n + 1, /2n + 1]. It follows that the numbers 7,,, of (4.1) belong to
the interval [ —g, ¢], when n is large, a = 0.

The estimate (4.2) is valid for k — oo, uniformly with respect to
me {1,2,...,n} when a > a,n, where a, is a fixed positive number.

In Table 4.1 we show for n = 10 the correct number of decimal digits in
the approximation (4.2). That is, we show
l%),m — T%),m

1%m

log,, , m=1,2...,10

where (¥, is the approximation obtained by the procedure described in
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Table 4.1

Correct number of decimal digits in the approximations of zeros of L{¥(x)

o 0 1 5 10 25 50 75 100

m
1 1.7 2.3 32 3.7 44 5.0 53 5.6
2 24 2.7 34 3.8 4.5 5.0 5.4 5.6
3 2.8 3.0 3.5 3.9 4.5 5.1 54 5.6
4 3.0 3.2 3.6 4.0 4.6 5.1 54 5.7
5 32 34 3.8 4.1 4.6 5.1 5.5 5.7
6 34 35 3.9 4.2 4.7 5.2 5.5 5.7
7 3.5 3.6 4.0 42 4.7 5.2 5.5 5.8
8 3.7 3.8 4.1 43 48 5.3 5.6 5.8
9 3.8 39 4.1 44 49 5.3 5.6 5.8

10 39 4.0 4.2 4.5 4.9 5.4 5.6 5.8

(4.1), (4.2). It follows that the large zeros are better approximated than the
small zeros. Furthermore, large values of a give better approximations, and
the approximations are uniform with respect to m.

Acknowledgment

The author would like to thank the referee for helpful suggestions on an
earlier version of the paper.

References

[1] M. A. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Nat. Bur. Stand. Appl.
Math. Ser. 55, Washington D.C. (1964).

[2] G. B. Baumgartner, Jr., Uniform asymptotic approximations for the Whittaker function M, ,(z).
Ph.D-Thesis, Illinois Institute of Technology, Chicago 1980.

[3] F. Calogero, Asymptotic behaviour of the zeros of the generalized Laguerre polynomial L%(x) as the
index a — co and limiting formula relating Laguerre polynomials of large index and large argument to
Hermite polynomials. Lett. Nuovo Cimento 23, 101-102 (1978).

[4] T. M. Dunster, Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions.
SIAM J. Math. Anal. 20, 744-760 (1989).

[S] A. Erdélyi, Bateman Manuscript project, Higher Transcendental Functions. Vol. II, McGraw-Hill,
New York 1953.

[6] A. Erdélyi, Asymptrotic forms for Laguerre polynomials. J. Indian Math. Soc. 24, 235-250 (1960).

[7] C. L. Frenzen and R. Wong, Uniform asymptotic expansions of Laguerre polynomials. SIAM J.
Math. Anal. 19, 1232-1248 (1988). )

[8] H. Hochstadt, The Functions of Mathematical Physics. Wiley-Interscience, New York 1971.

[9] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of
Mathematical Physics. Springer, Berlin 1966.

[10] F. W. J. Olver, Asymptotics and Special Functions. Academic Press, New York 1974.

[11] F. W. J. Olver, Whittaker functions with both parameters large: uniform approximations in terms of
parabolic cylinder functions. Proc. Royal Soc. Edinburgh 844, 213-234 (1980).

[12] G. Szegd, Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ.,, Vol. 23, New York 1958.



126 N. M. Temme ZAMP

Abstract

We give a brief summary of recent results concerning the asymptotic behaviour of the Laguerre
polynomials L(x). First we summarize the results of a paper of Frenzen and Wong in which n — co
and « > —1 is fixed. Two different expansions are needed in that case, one with a J-Bessel function and
one with an Airy function as main approximant. Second, three other forms are given in which « is not
necessarily fixed. These results follow from papers of Dunster and Olver, who considered the expansion
of Whittaker functions. Again Bessel and Airy functions are used, and in another form the comparison
function is a Hermite polynomial. A numerical verification of the new expansion in terms of the Hermite
polynomial is given by comparing the zeros of the approximant with the related zeros of the Laguerre
polynomial.
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